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Abstract

Predictive models in pretrial risk assessment influence judicial decisions but
often inherit racial biases from historical criminal justice data. This work ex-
amines racial bias in these models and applies bias mitigation techniques to
improve fairness. Using the Pretrial Release dataset (244,271 records, 112
features), we trained a random forest model with 100 estimators, achieving
83.27% accuracy on a 20% test set. To mitigate bias, we applied Reweighing
as a pre-processing technique and Calibrated Equalized Odds Postprocessing
as a post-processing method. Reweighing reduced the mean outcome dif-
ference from 0.009 to -0.00 in the training set, improving fairness at the
data level. However, in the testing set, 1 - min(DI, 1/DI) fluctuated be-
tween 0.0266 and 0.15, showing instability across classification thresholds.
After postprocessing, equal opportunity difference improved, reducing from
0.0136 to 0.0031 in the test set, while balanced accuracy remained at 0.6357.
The trade-off between fairness and accuracy was more controlled in post-
processing, making it more effective for a highly imbalanced dataset. Given
that fairness adjustments remained stable across validation and testing, Cali-
brated Equalized Odds Postprocessing is the preferred approach. Future work
should explore more diverse datasets, threshold tuning, and hybrid methods
to balance fairness and model performance.
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1 Introduction

1.1 Background
With the increasing use of predictive algorithms and artificial intelligence (AI) in different
sectors, it is critical that these algorithms are audited for bias. AI applications in the crim-
inal justice system have the potential to significantly impact people’s lives, necessitating a
more careful approach to guarantee their responsible use. Therefore, it is crucial to apply
ethical and trustworthy solutions in these high-stakes decisions. Pretrial risk-assessment
algorithms evaluate a defendant’s likelihood of failing to appear in court or committing
a new crime before trial, directly influencing judicial outcomes such as bail eligibility or
detention. While these tools are intended to reduce human subjectivity, they often per-
petuate systemic biases embedded in historical criminal justice data. For instance, ProP-
ublica’s 2016 analysis of the COMPAS risk-assessment tool revealed that Black defendants
were twice as likely as White defendants to be falsely flagged as high-risk for recidivism
Angwin et al. (2016). Such disparities arise from biases inherent in policing practices, such
as the over-surveillance of minority communities and socioeconomic inequalities reflected
in arrest records. When these patterns are encoded into training data, models are at risk
of amplifying existing inequalities instead of mitigating them, leading to discriminatory
outcomes such as disproportionately denying bail to minority defendants.
Unfair algorithmic predictions can perpetuate cycles of poverty and incarceration: defen-
dants denied pretrial release face higher risks of job loss, housing instability, or loss of child
custody, even if later exonerated. Furthermore, biased predictions undermine public trust
in judicial fairness. To address these concerns, models must be rigorously audited for dis-
parities in error rates (e.g., higher false positives for Black defendants) and outcomes (e.g.,
unequal bail denial rates across racial groups). To keep pretrial decisions fair, AI must be
constantly tested and improved so that it doesn’t reinforce discrimination against legally
protected groups.
Applying machine learning to pretrial risk assessment is expected to cause three major
harms. First, biased training data (e.g., over-policing in minority neighborhoods) can skew
arrest records and thus misrepresent actual crime rates. Second, proxy discrimination oc-
curs when variables such as a zip code or the number of prior arrests act as race prox-
ies, indirectly coding for bias even when protected attributes are excluded. Third, when
overprediction of crime in minority areas becomes a justification for increased policing, a
feedback loop occurs that generates more skewed data for future models.
This paper focuses on race as a protected attribute due to its disproportionate influence on
pretrial outcomes in the U.S. justice system. The target label, ’reoffend,’ measures whether a
defendant is predicted to commit a new crime pretrial. However, this label is often mislead-
ing: rearrest rates (used as proxies for reoffending) overstate the extent of actual criminal
behavior due to systemic policing biases. For example, Black individuals are more likely to
be arrested for low-level offenses than White individuals. To mitigate these risks, we pro-
pose using the AIF360 (AI Fairness 360) toolkit to audit and address bias across three stages
of the machine learning pipeline. In pre-processing, techniques such as reweighing sam-
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ples adjust training data to balance representation across racial groups. In post-processing,
decision thresholds are calibrated to equalize error rates between groups.
By integrating these fairness-aware techniques, this work aims to reduce discriminatory
outcomes while preserving predictive utility. Current pretrial tools often lack transparency
in bias testing, leaving courts unaware of systemic flaws. Our approach prioritizes race, an
attribute strongly tied to inequities in the U.S. justice system, to deliver actionable solutions
for judicial stakeholders.

1.2 Literature Review
Pretrial risk assessment tools aim to predict the likelihood that a defendant will fail to
appear in court or commit new crimes before trial. The Public Safety Assessment (PSA),
developed by the Laura and John Arnold Foundation (LJAF), is a framework that uses nine
objective factors—such as age at the time of arrest, prior convictions, and history of failure
to appear—to generate risk scores. The PSA excludes demographic variables such as race,
ethnicity, and geography to mitigate bias Laura and John Arnold Foundation (2199). The
California courts’ pretrial pilot program report evaluates the implementation of the PSA and
its accuracy in assessing risk levels across different populations Judicial Council of California
(2022).
In the field of machine learning, random forest models are recognized for their effective-
ness in risk prediction tasks. Random forest modeling involves constructing a larger number
of decision trees during training, where each tree provides a classification, and the forest
selects the most voted classification. This integrated approach improves prediction accu-
racy and controls overfitting. Research funded by the National Institute of Justice (NIJ)
has demonstrated the application of random forest models in criminal justice settings. For
example, a risk prediction tool developed for the Philadelphia Adult Probation and Parole
Department uses a random forest model to predict probationers’ behavior over a two-year
period. Themodel gathers available information about probationers and predicts their likely
behavior, helping to assign appropriate levels of supervision Ritter (2013).
Beyond risk assessment in probation systems, random forest models have shown strong per-
formance in crime prediction tasks. Hossain et al. (2020) applied a random forest model
with 100 trees and random undersampling, achieving 99.16% accuracy in crime prediction
using spatiotemporal data. Their model utilized key features such as day, time, type of
crime, and address, demonstrating that random forest effectively captures crime patterns
across different locations and times. Similarly, Aldossari et al. (2020) compared random
forest with decision trees and Naive Bayes models for crime category prediction in Chicago.
While the decision tree model achieved 91.68% accuracy using all available features, their
study emphasized the importance of feature selection, using backward feature elimina-
tion to improve model interpretability. This reinforces the advantage of tree-based models
like random forest which can handle complex feature interactions without extensive pre-
processing.
Moreover, random forest models are particularly useful when dealing with imbalanced

3



datasets, which is a common issue in crime prediction since certain crime types happen
far more often than others. The model’s bagging approach and feature randomness help
create diverse decision trees, making it more reliable even for less common crimes. How-
ever, while these models offer strong predictive power, they also rely on historical crime
data, which often reflects existing biases in law enforcement practices. Such behavior has
raised concerns about fairness in machine learning-based risk assessments and has led to
ongoing discussions about ways to detect and reduce bias in predictive systems.
The fairness debate in machine learning risk assessment has led to discussion of bias miti-
gation techniques. Three main strategies have been proposed: (1) excluding race-related
variables, (2) adjusting algorithms to equalize predictions across racial groups, and (3) re-
jecting algorithmic approaches altogether Mayson (2019). However, these approaches fail
to address the core problem: risk assessment inherently projects past inequalities into fu-
ture projections. Historical arrest and conviction data are disproportionately biased against
minority populations due to systemic factors such as over-policing in certain neighborhoods.
Fairness in crime prediction and pretrial risk assessment is typically measured using three
key metrics: demographic parity, equalized odds, and predictive parity. Demographic par-
ity requires that predictions be independent of protected attributes like race, meaning that
all groups receive similar risk classifications. However, this can lead to low accuracy if risk
scores differ across groups. Equalized odds ensures that false positive and false negative
rates are similar across racial groups, aiming to prevent disproportionately harsh treatment
of any group Chouldechova (2016). Predictive parity, commonly used in criminal justice
settings, ensures that individuals with the same risk score have a similar likelihood of reof-
fending.
Several bias mitigation techniques have been explored to reduce disparities in pretrial risk
assessment. One approach is pre-processing the training data to remove or balance bi-
ased historical trends. Kamiran and Calders (2012) proposed reweighing or modifying
the training set to reduce dependency on protected attributes. However, this approach
risks losing predictive signals and may not fully eliminate hidden biases. Another strategy
is in-processing methods, which modify the model itself to adjust decision boundaries for
different demographic groups. Hardt, Price and Srebro (2016) introduced an optimization-
based approach to enforce equalized odds by adjusting model predictions to ensure similar
error rates across groups. Finally, post-processing techniques adjust predictions after train-
ing to improve fairness metrics. One common approach is threshold adjustment, where risk
scores are calibrated differently for each group to meet fairness constraints. In practice, law
enforcement and judicial systems often rely on a combination of these techniques. Still, the
choice depends on legal constraints, public policy, and acceptable trade-offs between fair-
ness and accuracy.
In the following section, we describe our dataset, detailing its sources, structure, and key
variables. Section 2 outlines our methodology, including data pre-processing steps, ex-
ploratory data analysis, feature engineering, and model development using a random forest
classifier. We also discuss the integration of bias mitigation techniques to improve fairness
in risk assessment. In Section 3, we evaluate the impact of feature selection on model per-
formance, analyze fairness metrics, and examine the effectiveness of debiasing strategies
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in improving equitable outcomes.

1.3 Relevant Data Description
The Pretrial Release dataset, created by the Division of Criminal Justice Services (DCJS), is
designed to support research on bail reform policies introduced in the 2019 Criminal Justice
Legislation. This dataset is particularly useful for evaluating fairness in pretrial decision-
making, as it includes protected attributes such as race. The dataset contains records from
2023, making it a relevant and up-to-date source for studying the impact of pretrial deci-
sions on different demographic groups.
The dataset consists of 244,271 records and 112 features, covering various aspects of pre-
trial decisions and outcomes. Some of the key features include demographics, pretrial
decisions, outcomes, and financial factors. The demographic attributes provide essential
context for fairness analysis and include race, ethnicity, gender, age at arrest, and age at
crime. These variables allow for assessing disparities in pretrial decisions based on personal
characteristics. Pretrial decision-related features capture information on how individuals
are processed within the system. These include bail set and posted at arraignment, the
release type, and the supervision type. Outcome variables measure the effectiveness and
fairness of pretrial decisions. Some of the key outcome features include Failure to Appear
(FTA), reoffending, release decision at arraignment, and rearrest. These variables enable
an analysis of how different pretrial decisions correlate with public safety and court com-
pliance. Financial factors such as bail amount and bond type are also included, providing
insight into how monetary constraints influence pretrial release. These features help in
understanding whether financial conditions disproportionately affect certain demographic
groups. By leveraging these features, models can help identify potential biases in bail and
release decisions, offering insights into disparities across different demographic groups.

2 Methods

2.1 Pre-processing
Our first step involved a comprehensive analysis of missing values, which revealed 52
columns containing more than 1% missing data. Particularly concerning were columns
such as First_Bail_Set_Cash (200,656 missing values), First_Bench_Warrant_Date
(218,556 missing values), and Days_Arraign_Remand_First_Released (236,156 miss-
ing values).
To address these issues, we began by removing rows with missing values in the critical
rearrest column, as this column served as our primary outcome variable. We also stan-
dardized the handling of missing values by replacing empty strings with NaN values in key
categorical columns, including Top_Severity_at_Arraign, Disposition_Type, Disposition
_Detail, and Dismissal_Reason.
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To streamline our dataset, we removed irrelevant administrative columns such as Court_Name
and Court_ORI, which contained information that didn’t necessarily matter for our model.
The Court_Name and Court_ORI (a nine-character identifier containing both alpha and
numeric characters assigned by FBI CJIS, which validates legal authorization to access Crim-
inal Justice Information (CJI) and identifies the agency in all transactions)—wouldn’t help
much in determining whether someone would reoffend.
A significant step in our pre-processing involved the removal of columns with more than
90% missing values. While this reduced the dimensionality of our dataset, we determined
that these columns provided minimal analytical value due to their sparseness and their
removal would not significantly impact our analysis.
Data type standardization was another form of pre-processing that our group conducted.
We converted all date-related columns to the datetime format, including First_Arraign_Date,
First_Bench_Warrant_Date, and Disposition_Date. Count-based columns were con-
verted to integer types, ensuring appropriate numerical handling. We also implemented
consistent column naming conventions, replacing spaces with underscores and standardiz-
ing the format across all variables.
The final preprocessed dataset represents a significant improvement in data quality and
usability. We successfully reduced the number of columns from 112 to 79 while maintaining
244,721 records. The resulting dataset features consistent data types, eliminated high-
missing-value columns, and includes meaningful derived features. This cleaned dataset
provides a solid foundation for our analysis of pretrial outcomes, balancing the need for
comprehensive information with data quality and manageability. The pre-processing steps
taken ensure that our subsequent analyses will be based on reliable, well-structured data,
enabling more accurate insights into the pretrial release system in New York State.

2.2 Exploratory Data Analysis
Our EDA of the New York State Pretrial Release Dataset revealed several significant patterns
and insights about pretrial outcomes and demographic distributions. Our analysis focused
on key variables including rearrest patterns, demographic characteristics, geographic dis-
tribution, and the impact of prior criminal history.

Rearrest As shown in Figure 1, the analysis of rearrest outcomes indicated that the ma-
jority of individuals (83.7%) had no arrests during their pretrial period. Among those who
were rearrested, 8.1% were charged with misdemeanors, 6.0% with non-violent felonies,
and 2.2% with violent felonies. This distribution highlights that a significant majority of
individuals comply with pretrial release conditions, with only a small percentage engaging
in serious offenses during this period.

Age Distribution by Race As shown in Figure 2, demographic analysis revealed important
patterns in different segments of the population. The age distribution analysis showed a
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Figure 1: Distribution of rearrest outcomes in percentage.

concentration of cases among individuals aged 20–39, with a median age of 31 years. When
examining age distributions across racial groups, we found that Black defendants tended to
be younger on average (median age 29) compared to White defendants (median age 33).
Asian/Pacific Islander defendants had the highest median age at 35 years. The age-crime
relationship was also higher among younger defendants, with the 18–25 age group showing
higher rates of pretrial rearrest across all racial categories.

Figure 2: Age distribution at the time of crime across different racial groups, with median,
interquartile range, and outliers represented.

Note: The races with ’0’ at the age of crime are attributed to missing data.

Demographics Gender distribution (Figure 3(a)) indicated a significant disparity, with
males representing approximately 80% of cases and females 19%, with a small percentage
(1%) listed as unknown. Further analysis of gender and reoffending patterns revealed that
male defendants had a higher rate of pretrial rearrest (18.2%) compared to female defen-
dants (12.4%). This gender gap in reoffending rates remained consistent across different
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(a) Gender (b) Race

(c) Ethnicity

Figure 3: Demographic breakdown of reoffending status by gender, race, and ethnicity.

age groups and charge severities. Notably, the gender disparity in reoffending rates was
most pronounced in the 18–25 age group, where male defendants showed a 22.1% rearrest
rate compared to 14.8% for females.
Racial and ethnic distributions (Figures 3(b) and 3(c)) showed that Black individuals ac-
counted for 49.5% of cases, followed by White individuals at 38.9%, with other racial cate-
gories constituting the remaining percentage. The Hispanic population represented 24.8%
of cases, while non-Hispanic individuals accounted for 65.2%. Analysis of reoffending rates
across racial groups revealed disparities, with Black defendants showing a higher rate of
pretrial rearrest (19.3%) compared toWhite defendants (14.7%) and Asian/Pacific Islander
defendants (11.2%).

Geographic Distribution Although the dataset exclusively comprised individuals from
New York, analyzing its geographic distribution provided insights into substantial varia-
tions across the state’s judicial districts. This analysis (Figure 4) demonstrated substantial
variations across New York State’s judicial districts. The five boroughs of New York City
accounted for the majority of cases, with particular concentrations in New York County
(25.3%), Kings County (20.1%), and Queens County (15.8%). This distribution reflects
both population density and varying levels of law enforcement activity across a variety of
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regions.

Figure 4: Case distribution by county in New York State, showing the number of cases per
county with Kings County having the highest count.

Criminal History One of the most significant findings emerged from our analysis of prior
criminal history’s impact on pretrial outcomes. Individuals with prior offenses showed dif-
ferent patterns of pretrial conduct compared to those without prior records. The data re-
vealed that defendants with prior offenses had a reoffending rate of approximately 21.5%,
while those without prior offenses had a significantly lower rate of about 11.6%. This
difference suggests that prior criminal history serves as a meaningful indicator of pretrial
conduct.

2.3 Feature Engineering
We came up with these feature engineering ideas by combining domain expertise, ex-
ploratory data analysis (EDA), and insights from the literature review. Some ideas came
from patterns we found in the data, while others were inspired by known factors that in-
fluenced the outcome of the case. Here’s how each feature took shape.
The creation of the Has_Prior_Offense feature was driven by the well-established finding
that prior criminal history is a strong predictor of recidivism SERC (2022); U.S. Department
of Justice (2003). Instead of treating each prior offense type separately (prior_vfo_cnt,
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prior_nonvfo_cnt, and prior_misd_cnt), we consolidated them into a single binary
indicator. This new feature provided an indicator of previous criminal activity, where a
value of 1 indicated the presence of any prior offense and 0 indicated no prior criminal
history. This transformation helped capture the impact of criminal history on reoffending
risk in a simplified way.
We also engineered new timing features to capture the timing aspects of criminal behavior.
By calculating the time difference between the arrest date and crime date (Time_To_Arrest),
we created a feature that might indicate a faster or slower time to arrest. During the data
exploration stage, we observed that the gap between the crime date and the arrest date
might reflect differences in law enforcement efficiency or the type of crime committed.
Similarly, we computed the length of the pretrial period (Pretrial_Duration) by mea-
suring the time between arraignment and disposition dates, providing insight into how the
duration of pretrial release might affect outcomes. Longer pretrial periods could influence
a defendant’s ability to prepare a defense, their likelihood of accepting a plea bargain, or
even their future behavior.
Another important feature engineering step involved categorizing case resolution times.
We analyzed the Days_Arraign_to_Dispo variable, which tracks the time from arraign-
ment to case disposition. Based on the distribution of these times (with a mean of ap-
proximately 59 days and a median of 33 days), we created a categorical feature called
Resolution_Category with four distinct categories:

• Very Fast Resolution: Cases resolved in less time than the 25th percentile
• Fast Resolution: Cases resolved between the 25th percentile and median
• Moderate Resolution: Cases resolved between the median and 75th percentile
• Slow Resolution: Cases taking longer than the 75th percentile

This categorization helps capture the speed of case resolution in a more interpretable way,
potentially revealing patterns in how case processing time relates to pretrial outcomes.

Resolution Category Number of Cases
Fast Resolution 69,611
Slow Resolution 63,646

Moderate Resolution 59,173
Very Fast Resolution 52,290

Table 1: Distribution of Cases by Resolution Category

Note: The categorization of the speed of resolution was determined by our project team
based on general perceptions of legal severity. Therefore, it may not fully represent the
legal definition of what a ’very fast’ resolution looks like.
Moving on, legal classifications often involve complex categorical codes, making direct anal-
ysis challenging. Our final step in the feature engineering process involved creating a sever-
ity score based on the type of law code associated with each case.
We developed a custom mapping function that assigned severity levels (1–5) to different
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law codes based on their general severity in the legal system. This custommapping function
assigned severity levels based on the general severity of each law code in the legal system,
enabling straightforward comparisons between cases and improving the interpretability of
model decisions. The mapping was structured as follows:

• Severity Level 5 (Most Severe):
– PL (Penal Law)
– CPL (Criminal Procedure Law)
– LAB (Labor Law)
– COR (Corrections Law)
– HHC (Housing Code/Habeas Corpus Law)

• Severity Level 4:
– VTL (Vehicle and Traffic Law)
– TAX (Tax Law)
– ECL (Environmental Conservation Law)
– PHL (Public Health Law)
– WC (Workers’ Compensation Law)

• Severity Level 3:
– GB (General Business Law)
– RPA (Real Property Actions)
– LOC (Local Law)
– AGM (Attorney General’s Manual)
– MTA (Metropolitan Transportation Authority Law)

• Severity Level 2:
– AC (Arbitration Court)
– AM (Administrative Law)
– SCL (State Civil Law)
– TOH (Town or Housing Law)
– SW (Social Welfare Law)
– PRR (Public Records Law)

• Severity Level 1 (Least Severe):
– ABC (Alcoholic Beverage Control Law)
– RSS (Revised Statutes Supplement)
– CAN (Canon Law)
– TIS (Transportation and Infrastructure Law)
– ED (Education Law)

This mapping created a new feature, which we called crime_severity, that converted
categorical law codes into an ordinal scale, making it more suitable for our machine learning
models while preserving the inherent severity hierarchy of different law types.
Note: The categorization of severity levels was determined by our project team based on
general perceptions of legal severity. Therefore, it may not fully represent the actual severity
used in formal legal contexts.
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Severity Level Number of Cases
5 222,344
4 20,224
3 13
2 475
1 164

Table 2: Distribution of Cases by Crime Severity Level

2.4 Random Forest Model Development
Our model development process focused on creating a random forest classifier to predict
the risk of pretrial reoffending. We chose the random forest algorithm because it handles
both numerical and categorical features effectively, provides rankings of feature importance,
and captures complex relationships among the various features included in our model.
We first created binary indicators for our criminal history features. Using lambda func-
tions, we transformed the count-based variables (prior_misd_cnt, prior_nonvfo_cnt,
and prior_vfo_cnt) into binary indicators where 0 represented no prior offenses and 1
represented one or more prior offenses. These transformations resulted in three new fea-
tures: prior_misd_binary, prior_nonvfo_binary, and prior_vfo_binary.
For our model input, we selected seven key features that captured different aspects of
pretrial risk:

• prior_misd_binary
• prior_vfo_binary
• prior_nonvfo_binary
• pend_vfo
• pend_nonvfo
• pend_misd
• crime_severity

Our target variable, reoffend, was structured as a binary indicator of whether a defendant
was rearrested during the pretrial period.
We implemented the random forest classifier using scikit-learn’s RandomForestClassifier
with n_estimators=100 and a random_state=42 for reproducibility. The data was split
into training (50%), validation (30%), and test (20%) sets using train_test_split twice—
first to separate the training set and then to divide the remaining data into validation and
test sets.

2.5 Addressing Imbalanced Labels
To handle the class imbalance in our dataset, we applied two oversampling techniques:
Random Oversampling and SMOTE (Synthetic Minority Over-sampling Technique). These
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methods help balance the dataset by increasing the number of minority class samples, re-
ducing model bias toward the majority class.
First, we implemented SMOTE, which generates synthetic samples for the minority class
rather than duplicating existing ones. This technique helps improve model generaliza-
tion and prevents overfitting. We used imbalanced_make_pipeline to integrate SMOTE
with the random forest classifier, setting class_weight=’balanced’ to further adjust the
model’s learning based on class distribution. We employed the entropy criterion to effec-
tively manage the information gain.
After oversampling, we performed hyperparameter tuning to improve model performance.
We used Stratified K-Fold Cross-Validation (k=5) to ensure balanced splits across all folds.
A grid search was applied to optimize key parameters, including the number of estima-
tors (n_estimators), maximum tree depth (max_depth), and random state. The best
parameters found were max_depth=6, n_estimators=200, and random_state=13, se-
lected based on recall score, as improving recall for the minority class (reoffenders) was
our primary goal. The impact of these methods on model performance is discussed in the
Results section.

2.6 Initial Statistical Analysis
After the initial model development, we completed a statistical assessment of the models’
predictions on the test set. The proportion of Black individuals predicted to be reoffenders
was higher than the other races at a value of 0.01. White individuals had a rate of 0.008,
and Asian/Pacific Islander and Native American/Alaska Natives had rates around 0.006. We
conducted an ANOVA test across all groups to determine whether the differences in these
proportions were statistically significant. The test yielded a p-value of 0.0002, indicating a
significant difference. The t-test comparing Black individuals and White individuals yielded
the value of 0.0003, which further confirmed this significance. The FPR rates across races
also showed some variance. Black individuals had the highest FPR rate of 0.0093, followed
by white individuals with an FPR of 0.0067, and the remaining groups had similar values,
such as Asian/Pacific Islander at 0.0052 and Native American/Alaskan Native at 0.0075.
Based on these FPR results, we concluded that there was some racial bias. FPR is a useful
metric for assessing a model’s fairness, as if there is an imbalance in the values, it means a
group is potentially being disproportionately targeted. Unfair outcomes, such as the unjust
detention of low-risk individuals misclassified as high-risk, can arise in a criminal justice
context. Due to these potential serious impacts, we considered this difference across racial
groups noteworthy. In the next step of the process, bias mitigation, we used the racial-bias
information accordingly. In creating our AIF360 dataset, we selected race as the protected
attribute due to this observed difference and aimed to mitigate any bias found across these
groups in the model’s predictions. These findings identified it as a factor that should not
unfairly influence the outcomes of the model, an essential step in debiasing the model.
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2.7 Bias Mitigation Techniques
To address potential bias in our model, we applied Reweighing as a pre-processing tech-
nique and Calibrated Equalized Odds Postprocessing as a post-processing technique using
AIF360. We selected these methods to maintain overall model performance while ensuring
fairer predictions across different racial groups. We selected Reweighing as a pre-processing
method because it adjusts the training dataset before model learning. This technique as-
signs different weights to instances in the dataset based on group membership, ensuring
that underrepresented groups contribute more significantly to the model’s learning process.
Reweighing helps correct imbalances in the training data so that the model does not de-
velop bias toward the majority group. We specified the unprivileged group as Race = 0 and
the privileged group as Race = 1. The algorithm first computes the necessary weights for
each sample, transforming the training dataset accordingly. Once reweighing is applied,
the classifier is trained on the adjusted dataset, leading to a more balanced decision-making
process.
In addition to reweighing, we implemented Calibrated Equalized Odds Postprocessing to
ensure fairness at the prediction level. This technique modifies the final predictions of
a trained model so that false positive and false negative rates are more balanced across
groups. The process begins by training the model on the original dataset without reweigh-
ing but using the fine-tuned version with oversampling. After training, a calibration model
is created using AIF360 to align the predictions with equalized odds constraints across
groups. This calibration adjusts the predicted probabilities, modifying classification out-
puts to reduce disparities in false positive and false negative rates between privileged and
unprivileged groups. The adjusted predictions are then evaluated to ensure fair classifica-
tion rates while maintaining model accuracy.

3 Results and Discussion

3.1 Model Performance
The model’s performance was evaluated using several key metrics. On the test set, the ran-
dom forest classifier achieved an overall accuracy of 0.8327, but the balanced accuracy is
only 0.5067, indicating poor performance on the minority class. Looking at the classifi-
cation report, precision, recall, and F1-score vary significantly between classes. For Class
0 (no reoffend), the model performs well with a precision of 0.84, a recall of 0.99, and
an F1-score of 0.91. However, for Class 1 (reoffend), the recall is extremely low at 0.02,
meaning the model fails to identify most reoffenders correctly. Precision for Class 1 is 0.30,
but due to the low recall, the F1-score is only 0.04.
The imbalance in predictions suggests that the model is heavily biased toward Class 0. This
happens because the dataset is likely imbalanced, with far fewer reoffenders than non-
reoffenders. Since accuracy is dominated by the majority class, it does not fully reflect
model performance in this case. The low recall for Class 1 means the model is not useful
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for predicting reoffenders.

3.2 Feature Importance Analysis
Feature importance analysis revealed the following contributions to the model:

• Age_at_Arrest: 0.48 (Strongest predictor)
• pend_misd: 0.21
• pend_nonvfo: 0.11
• prior_misd_binary: 0.07
• prior_nonvfo_binary: 0.03
• Top_Arraign_Law (PL): 0.02
• Top_Arraign_Law (VTL): 0.01

The Age_at_Arrest feature emerged as the most influential predictor, while pending case
indicators and prior criminal history also played significant roles. The Top_Arraign_Law
features contributed slightly less to the model’s predictions.

3.3 Results After Balancing the Dataset
Applying random oversampling and SMOTE improved the model’s ability to detect reof-
fenders (Class 1). Before fine-tuning, the model achieved a recall of 0.50 for Class 1, which
means it correctly identified half of the reoffenders. However, precision remained low at
0.26, leading to an F1-score of 0.35. For Class 0, recall dropped to 0.73, but precision
improved to 0.88, resulting in an F1-score of 0.80.
After fine-tuning, recall for Class 1 increased to 0.66, meaning the model captured more
actual reoffenders. The precision remained at 0.26, leading to a slight improvement in
F1-score (0.38). For Class 0, recall dropped further to 0.63, but precision increased to
0.90, resulting in an F1-score of 0.75. The balanced accuracy improved to 0.6466, and
the ROC-AUC score reached 0.6914, indicating a better overall trade-off between sensi-
tivity and specificity. Fine-tuning provided the best balance between precision and recall,
ensuring better identification of reoffenders while maintaining reasonable accuracy for non-
reoffenders. Since this is the best result we achieved, wewill continue using these optimized
parameters (max_depth=6, n_estimators=200, random_state=13) for future predictions.

3.4 Accuracy and Fairness Metrics
We assessed the impact of bias mitigation by comparing fairness metrics before and after
applying Reweighing and Calibrated Equalized Odds Postprocessing. These methods were
used to address disparities between unprivileged (Race 0) and privileged (Race 1) groups
while preserving overall model performance.
Before debiasing, the mean outcome differences between groups were 0.009 in the train-
ing and validation sets and 0.012 in the test set, indicating a small bias. After applying
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Dataset Before Debiasing After Reweighing
Train Set 0.009 -0.000000

Validation Set 0.009 -
Test Set 0.012 -

Table 3: Mean outcome differences between unprivileged and privileged groups before
and after reweighing.

Reweighing, the difference in the training set dropped to 0.000000, suggesting that the
dataset became balanced at the training stage. The full comparison of mean outcome dif-
ferences before and after reweighing is presented in Table 3.
The first figure (5) represents the validation set, while the second figure (6) represents the
testing set, both using a model trained with the Reweighing technique. In both plots, bal-
anced accuracy (blue) and fairnessmetrics (red) are plotted against classification thresholds
to evaluate trade-offs between performance and fairness.
In Figure 5, the balanced accuracy reaches its peak at a classification threshold of around
0.16 and then gradually declines. The Average Odds Difference fluctuates but stabilizes
near the optimal threshold. In Figure 6, the overall trend is similar, but 1 - min(DI, 1/DI) is
more volatile across classification thresholds. This result indicates that fairness constraints
generalize less consistently in the testing set. The balanced accuracy also peaks near 0.16
but shows a sharper decline compared to validation.
Comparing both figures, the validation set provides a smoother balance between accuracy
and fairness, whereas the testing set shows higher variance in fairness metrics. This sug-
gests that while reweighing improves fairness in training and validation, its generalization
to unseen test data is more uncertain.

Metric Validation Testing
Threshold (Best Balanced Accuracy) 0.1600 0.1600

Best Balanced Accuracy 0.6281 0.6357
1-min(DI, 1/DI) 0.0581 0.0266

Average Odds Difference 0.0083 -0.0050
Statistical Parity Difference 0.0234 0.0106

Equal Opportunity Difference -0.0107 -0.0234
Theil Index 0.1239 0.1231

Table 4: Validation and testing performance metrics after reweighing.

The impact of reweighing on the validation and testing performance is summarized in Table
4. The balanced accuracy improved slightly after reweighing, reaching 0.6357 in testing.
The statistical parity difference and equal opportunity difference decreased, reducing dis-
parities in prediction rates across groups. Additionally, the Theil index, which measures
entropy-based fairness, remained stable at 0.123, indicating that reweighing did not signif-
icantly impact overall model uncertainty.
To further adjust for fairness at the prediction level, we applied Calibrated Equalized Odds
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Figure 5: Validation set performance after applying Reweighing

Postprocessing, Table 5 presents the group false positive rate (GFPR) and group false neg-
ative rate (GFNR) differences before postprocessing.

Dataset GFPR Difference GFNR Difference
Train Set 0.0171 0.0001

Validation Set 0.0167 -0.0006
Test Set 0.0136 0.0024

Table 5: False positive and false negative rate differences before postprocessing.

After postprocessing, differences in group false positive rates (GFPR) and group false neg-
ative rates (GFNR) reduced, meaning the model became more consistent in treating privi-
leged and unprivileged groups equally.

Dataset GFPR Difference GFNR Difference
Validation Set 0.0162 -0.0001

Test Set 0.0132 0.0031

Table 6: False positive and false negative rate differences after postprocessing.

The transformed results, as shown in Table 6, indicate a drop in GFPR difference to 0.0132
in the test set, with a slight increase in GFNR difference to 0.0031. This adjustment helped
balance errors across groups, reducing prediction disparities.
The validation (7) and testing (8) graphs compare balanced accuracy and equal opportunity
difference before and after applying Calibrated Equalized Odds Postprocessing. Both graphs
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Figure 6: Testing set performance after applying Reweighing

indicate that postprocessing reduces the equal opportunity difference (red dashed line),
meaning it improves fairness across groups. However, balanced accuracy (blue dashed line)
remains similar or slightly decreases after postprocessing.
Reweighing effectively adjusted the dataset, improving fairness in training, but fairness
metrics fluctuated in testing. Calibrated Equalized Odds Postprocessing directly corrected
prediction disparities, leading to more stable fairness outcomes in both validation and test-
ing. Given the high class imbalance, postprocessing is preferable because it ensures fairness
without modifying data distribution, making it more applicable when fairness constraints
must be met.

3.5 Limitations and Next Steps
One of the major challenges we faced in this project was difficulty accessing existing models
used in classification problems regarding criminal justice. Since the data used to train these
models is typically sensitive, there is a lack of public availability of these models. Many
of the tools we hoped to assess in our project were inaccessible, which is why we used
multiple sources with descriptions of models and features to be used to create a custom
model that we moved forward with in the process. We were also limited in finding models
that could validate our findings. Our custom model approach introduced new uncertainties
and complexity factors without external validation.
Criminal justice-related databases also tend to be imbalanced. In this case, our dataset
had significantly more cases of offending (203,730) in comparison to cases of reoffending
(39,490). This limitation can cause issues in training and development as the model can
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Figure 7: Balanced Accuracy and Equal Opportunity Difference in the validation set
before and after postprocessing

Figure 8: Balanced Accuracy and Equal Opportunity Difference in the testing set before
and after postprocessing

over-predict the more common result and not learn the trends in reoffending. This dis-
advantage also makes it harder to achieve a higher accuracy while not compromising on
fairness. Not only that, the result impacts the model’s applicability to real-world scenarios,
which can be risky and lead to serious consequences in its use case.
As with any predictive task in criminal justice, there are ethical considerations, primarily
regarding the model’s potential for biased predictions. The model may unintentionally
inherit underlying historical biases from the training data, negatively impacting its fairness.
Although addressing and reducing bias is a central goal of our project, it remains important
to acknowledge this limitation. Certain biases may still exist despite strong efforts to reduce
them, so they need to be regularly checked for.
In the future, we would like to pursue gaining access to actual criminal justice predictive
models currently in use. As previously mentioned, there is limited availability due to the
sensitive nature, but with some proper licensing and allowances, we may be able to gain
access to a model and validate our findings from this research. This way, we would know
our custom model aligns with the most up-to-date practices and techniques in the field, and
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our findings about bias can be more directly translated to real-world use cases.
One of the next steps to take would be exploring some more diverse datasets. Currently, the
dataset in use is very specific to the NY region. Having a larger database makes our con-
clusions more generalizable as they capture more complexity in different contexts. With
various locations and demographics, the data can help the model be more robust. It can
also capture regional differences and provide a more comprehensive representation of be-
havioral patterns.
It would also be important to continue the model’s development to improve its accuracy
and try to mitigate any new biases brought on by that process. It is important to avoid any
potential overfitting to certain features and introducing new bias. Continuous evaluation of
bias throughout the model development process can ensure the model’s predictions remain
fair.

4 Conclusion
This paper explores the application of machine learning fairness techniques to reduce racial
bias in pretrial risk assessment algorithms. By identifying bias in these models, we ana-
lyze how racial disparities occur and assess the differences in false positive and false nega-
tive rates across various racial groups. To address these disparities, we implemented pre-
processing, in-processing, and post-processing methods to balance racial representation
and ensure the equalization of error rates. Additionally, we measured the effectiveness of
bias mitigation techniques and evaluated the trade-offs between fairness and accuracy in
the machine learning models.
The initial random forest classification model achieved 83.27% accuracy, but its balanced
accuracy was only 50.67%. This value indicates poor performance on the minority class,
which in our case are the reoffenders. The model performed well with 0.84 precision, and
for non-reoffenders, it achieved a 0.99 recall and an F1-score of 0.91. However, it per-
formed very poorly for reoffenders, with a recall of 0.02 and an F1-score of 0.04, due to the
imbalance in the dataset. The feature that was the strongest predictor in the random forest
model was age_at_arrest, followed by pending misdemeanors and other prior offenses.
The first step in bias mitigation and fairness adjustments was to address the dataset imbal-
ance using random oversampling and SMOTE. This improved the recall for class 1 to 0.50
but led to a decrease in precision, resulting in an F1-score of 0.35. After fine-tuning the
model, recall improved to 0.66, and balanced accuracy reached 64.66%. After balancing
the data, reweighing was introduced to reduce the bias between the privileged and un-
privileged groups. These steps brought the mean outcome difference in the training data
to nearly 0, but fairness generalization remained inconsistent in the test set. For post-
processing bias mitigation, we used calibrated equalized odds to balance the false positive
and false negative rate differences. This technique made the predictions more consistent
across the two groups while maintaining overall model performance.
Our findings highlight the challenges of predicting reoffending fairly and accurately. This
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improved model can help policymakers and criminal justice stakeholders develop more eq-
uitable risk assessment tools that reduce bias while maintaining model performance. This
research contributes to the field of fairness in machine learning by demonstrating the trade-
off between accuracy and fairness in decisions that affect many lives. It emphasizes the
importance of balancing model performance with ethical considerations. By applying fair-
ness metrics and debiasing techniques, this study provides insight into addressing bias in
predictive modeling within the criminal justice system.
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This appendix provides definitions and formulas for the key metrics used in our bias miti-
gation and model evaluation.

A.1 Synthetic Minority Over-sampling Technique (SMOTE)
SMOTE is a technique used to address class imbalance by generating synthetic examples
for the minority class. It selects a random sample from the minority class and interpolates
new samples along the line segment joining it with one of its k-nearest neighbors.

xnew = x i +λ(xnn − x i) (1)
where:

• x i is a randomly selected minority class instance,
• xnn is one of its k-nearest neighbors,
• λ is a random number in the range [0,1].

A.2 Reweighing
Reweighing is a pre-processing technique that assigns different weights to instances in the
dataset to reduce bias. Samples from unprivileged groups are assigned higher weights, and
those from privileged groups receive lower weights to ensure a balanced dataset.
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A.3 Calibrated Equalized Odds Postprocessing
This post-processing technique adjusts the prediction probabilities to satisfy equalized odds,
ensuring similar false positive and false negative rates across groups. It applies probability
calibration to correct classification disparities without retraining the model.

A.4 Balanced Accuracy
Balanced accuracy is the average of recall scores for each class, ensuring performance is
fairly evaluated across imbalanced classes.

Balanced Accuracy= 1
2

�
T P

T P + FN
+

T N
T N + F P

�
(2)

A.5 1-min(DI, 1/DI)
This metric is derived from the disparate impact (DI) measure, which quantifies fairness in
classification outcomes. It is calculated as:

DI= P(Ŷ = 1|A= 0)
P(Ŷ = 1|A= 1)

(3)

where:
• P(Ŷ = 1|A= 0) is the probability of a positive outcome for the unprivileged group,
• P(Ŷ = 1|A= 1) is the probability of a positive outcome for the privileged group.

Calculate the metric 1-min(DI, 1/DI) as follows:(DI, 1/DI)

1−min(DI ,
1
DI
) (4)

1-min(DI, 1/DI) < 0.2 is typically desired for classifier predictions to be fair.

A.6 Average Odds Difference
Average Odds Difference measures the average difference in true positive rates (TPR) and
false positive rates (FPR) between unprivileged and privileged groups. Average Odds Dif-
ference must be close to zero for the classifier to be fair.

Avg Odds Diff= 1
2
((T PR0 − T PR1) + (F PR0 − F PR1)) (5)

where:
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• T PR0, T PR1 are the true positive rates for the unprivileged and privileged groups.
• F PR0, F PR1 are the false positive rates for the unprivileged and privileged groups.

A.7 Equal Opportunity Difference
Equal Opportunity Difference focuses only on true positive rates (TPR) and measures the
fairness gap in positive outcomes.

Equal Opportunity Difference= T PR0 − T PR1 (6)

A value of 0 indicates perfect fairness.

A.8 Theil Index
The Theil Index measures inequality in information distribution. It quantifies prediction
disparity and is based on entropy.

T =
∑

i

pi log
pi

p̄
(7)

where:
• pi is the proportion of positive outcomes for group i,
• p̄ is the overall mean proportion.

A.9 GFPR Difference (Group False Positive Rate Difference)
GFPR Difference measures the disparity in false positive rates between unprivileged and
privileged groups.

GFPR Difference= F PR0 − F PR1 (8)

A.10 GFNR Difference (Group False Negative Rate Difference)
GFNR Difference measures the difference in false negative rates across groups.

GFNR Difference= FNR0 − FNR1 (9)

where:
• FNR0 is the false negative rate for the unprivileged group,
• FNR1 is the false negative rate for the privileged group.
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